
Rapid Application of Lightweight Formal Methods
for Consistency Analyses

Martin S. Feather
Jet Propulsion Laboratory, California Institute of Technology

Mail Stop 125-233
4800 Oak Grove Drive

Pasadena CA 9 1 109, USA
Martin.S.Feather@Jpl.Nasa.Gov

Abstract

Lightweight formal methods promise to yield modest analysis results in an extremely
rapid manner. To fulfill this promise, they must be able to work with existing
information sources, be able to analyze for manifestly desirable properties, be highly
automated (especially if dealing with voluminous amounts of information), and be readily
customizable and flexible in the face of emerging needs and understanding. Two pilot
studies investigate the feasibility of lightweight formal methods that employ a database as
the underlying reasoning engine to perform the analyses. The first study concerns aspects
of software module interfaces, the second test logs’ adherence to required and expected
conditions.

pt&ASq c y ana f y s i s
&ffb hdfb 4

1. Introduction

Critical software systems often warrant high levels of assurance as to the correctness of
their design and implementation. Increasingly, formal methods are being applied in
conjunction with traditional testing as a means to achieve these high levels of assurance.
In such a context, formal methods are just another analysis technique, and the choice of
when and where to apply them should be justified in terms of their cost-effectiveness.
Criteria that enter into this determination include the ease of application of the methods,
and the timeliness and value of their results.

Jackson and Wing [Jackson & Wing 19961 in their contribution to a roundtable
discussion use the term lightweight formal methods to refer to formal methods intended
to be particularly amenable to rapid application, and thus have the capacity to yield results
in a cost-effective and timely fashion. Traditionally, use of tool-based formal methods in

The research described in this paper was carried out by the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National Aeronautics and
Space administration. Funding was provided under NASA’s Code Q Software Program
Center Initiative UPN #323-08.
Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the
United States Government or the Jet Propulsion Laboratory, California Institute of
Technology.

mailto:Martin.S.Feather@Jpl.Nasa.Gov

i Feather Rapid Application of Lightweight Formal Methods. 2

the arena of software validation and verification has applied theorem proving to confirm
properties of formal specifications. Theorem proving can indeed be applied to conduct
deep and significant analyses, but often requires a large investment of effort to prepare for
its application. In contrast, lightweight formal methods occupy a different place in the
spectrum of analysis techniques. They have more modest analysis goals, and employ tools
that require less preparatory work to apply.

The goal of rapid application ensures that the analysis results become available early in
the development process. This has the obvious benefit that the developers become alerted
to discovered problems early rather than late in the development process, so saving them
the considerable effort of fixing errors downstream [Boehm 19811. Thus, the analysis
results are both timely and potentially valuable. Furthermore, the need to achieve rapidity
of analysis has the side effect of constraining the analysis method to be one which is easy
and simple to apply (anything otherwise would fail to be sufficiently rapid!). That is, by
their nature, rapidly applied analysis methods are inherently inexpensive.

The approach we have followed employs a database as the underlying reasoning engine to
perform analyses. The rationale for this choice is described in Section 2, along with the
background to the two pilot studies used to investigate the feasibility of this approach.
The first pilot study is described in Section 3, along with the intermediate conclusions
drawn from that effort. The second pilot study employed the same tool in support of
analysis, and was applied to a different aspect of that same project; it is described in
Section 4. An overall discussion concludes the paper in Section 5.

2. Approach

Meeting the goal of rapid application necessitates a judicious simultaneous choice of
analysis objective and analysis method. It must be relatively easy and speedy to:
(1) acquire the information to be analyzed in the form required for analysis,
(2) decide what to analyze this information for,
(3) actually perform the analysis itself, and
(4) interpret the results of the method.

Together, (1) and (2) imply a need to employ analysis techniques that work with available
sources of information and to analyze for properties that are readily seen to be required
and readily expressed to the analysis tool. (3) and (4) imply a need to apply highly
automated analysis methods that are both rapid and flexible.

Our approach is distinguished from previous approaches (both lightweight and
heavyweight) by the fact that we frame the analysis problem in terms of database queries,
and we use a database as the underlying analysis engine. The information to be analyzed
is loaded as data into the database, and the properties to be analyzed for are cast as
database queries. The database itself evaluates those queries, and the query results
provide the detailed analysis results.

The strengths and weaknesses of a database used as an analysis engine differ somewhat
from those of reasoning engines typically brought to bear for software analysis. A typical
database provides a flexible query language, user-definable schema with which to express

Feather Rapid Application of Lightweight Formal Methods.. . 3

relationships among data, support for loading data into the database, and powerful report
generation capabilities. These characteristics support the four criteria identified above.
The user-definable schema and support for data entry facilitate working with available
sources of information in a large variety of formats. A flexible query language permits the
easy expression of a wide range of properties to be analyzed for. The underlying query
optimization mechanism relieves the user from the burden of (re)expressing the property
(query) just so as to achieve efficiency of analysis. The ability to refine and compose
queries provides flexibility to evolve the analysis. Result reporting and categorization
supports ease of expressing results (e.g., listing anomalies and their details).

Of course, a database is not suited to every kind of analysis. The most important
constraining factor is the need to work with explicit information (so that it can be loaded
as data into the database). In contrast, other analysis techniques are commonly based upon
mechanisms that work with implicit forms of expression. For example, state-exploration
techniques may work with a program-like description, implying a state space; they
generate and explore this implicit state space themselves. The ability to analyze properties
of implicit forms of information is highly desirable - it may yield results that are difficult
for humans to reliably ascertain by manual inspection. Theorem proving can be applied to
analyze properties of implicit descriptions of information that, if made explicit, would be
infinite in size. Yet working with implicit information often necessitates a good match of
both notation and scale between the form of the information to be analyzed, and the form
and scale of input that the analysis tool can accept and tractably reason with. Mismatches
in either form or scale can be bridged, but typically only with a considerable investment
of time and effort.

Another distinguishing characteristic of our approach is the emphasis on working with
available information. Our motivation is twofold: first and foremost, to achieve the
rapidity of analysis that we desire; second, to be able to ascribe the benefits of the
approach to mechanized analysis rather than to the involvement and insight of a skilled
analyst. This last point is important if we seek to transfer the technique into widespread
use, since analysis technology is readily replicated, whereas skilled analysts are not.

This paper reports on two closely linked pilot studies that rapidly apply lightweight
formal methods employing a database as reasoning engine. These pilot studies investigate
feasibility by application to real problems, but do not replace any of the inspection and
testing activities that the spacecraft developers must currently perform. The intent is that
a pilot study will indicate whether a technique has promise, and if so, indicate how it
should be put to practical use in future projects.

The area of the studies is the ongoing design and development of spacecraft software. The
particular spacecraft we have studied is NASA’s New Millennium project’s Deep Space-
1, in particular, the Autonomy software intended to control that spacecraft. The spacecraft
project adopted a fast-paced rapid prototyping style of development, and
employedrelatively complex on-board software. Rapidly applied analysis methods were
thus highly appropriate. Our focus was on two aspects of this project: analyzing for
consistency and completeness properties of interfaces between some of the software
modules, and analyzing transcripts generated during testing for adherence to some of the

Feather Rapid Application of Lightweight Formal Methods.. . 4

requirements. Analyses such as these are likely to be useful in a wide range of software
systems, not just spacecraft software.

3. Pilot Study I - Analyzing Software Interfaces

The software system that controls the spacecraft is subdivided into several major
modules, which communicate via message passing. Separate teams of developers are
responsible for the design and development of each of these modules. A previous study of
safety-critical, embedded systems [Lutz 19931 identified interfaces as a major source of
software errors. This suggested that the interfaces between this spacecraft’s modules
would be an area ripe for analysis. Furthermore, lightweight analysis was anticipated to
be applicable to reveal discrepancies between different modules at the interface level.

The four requirements for rapid analysis led to the following decisions:

To rapidly acquire the information to be analyzed: In the early stages of development,
the interface of each module was documented diagrammatically to facilitate
coordination and understanding between the development teams. Thus the analysis
process was targeted to work with this same information source.

To rapidly decide what to analyze this information for: Manifestly desirable
properties of consistency and completeness were easy to postulate. Additional
information present in the diagrams, in the form of simple causality information, also
served as a source of further obvious analysis opportunities.

To rapidly peflorm the analysis itself: A database with a powerful and flexible query
mechanism was chosen to serve as the analysis tool. The expectation was that it
would be straightforward to design a database schema customized for holding the
information content implied by the diagrams, load the diagrams’ information into that
database, and express the analyses as database queries. Thereafter, the query
mechanism of the database itself would perform the analyses rapidly and
automatically.

To rapidly interpret the results of the method: Discrepancies that this analysis
revealed would be readily traceable to the interface diagrams, and so would be easy to
interpret. The exercise showed that some iterative refinement of the queries was
needed to separate those discrepancies attributable to obviously missing information
from those ‘discrepancies that were more indicative of unintended omissions, etc.
Again, the flexibility and simplicity of a database analysis engine proved the key to
the rapidity of these iterative refinements.

Available Information

In the early stages of development, the interface of each module was documented
diagrammatically to facilitate coordination and understanding between the development
teams.

Figure 1 shows an example of one of these diagrams. The software module is drawn as a
rectangular box; arrows entering into and emanating out from this box indicate the types
of messages that can be received by and sent from this module. In more detail:

Feather Rapid Application of Lightweight Formal Methods.. . 5

All the possible input message types of the module are shown as incoming arrows
on the left.

Smart Executive

"Initialize"

"NAV-PLAN-PREP-FINISHED
(NAV)

"PS-PLAN-RESULT <filename>"
(PS)

"MICAS-SNAPSHOT-AVAILABLE <filenam&
(MICAS)

"MR-RECOVERY-PLAN d a s k - n e b "
(MI R)

"MI-SEND-ALL-MODES"
, "

(MI R)
/

/ , "ACS-BC-THRUSTER-MODE <mode>"
' (ACS) (MI R)

"NAV-PLAN-PREP
0

/ (NAV)
0 "PS-PLAN-NEXT-HORIZON <goal-file> a e w p

"EXEC-NEW-PLAN-READY <filename>"

"ACS-ACM-EXECUTEJURN <id> <attilu

(PS)

(NAV)

(ACS) (MIR)

"MICAS-TAKE-SNAPSHOT <image d e s 0 diler

"NAV-SNAPSHOT-AVAILABLE <target>dilenan
'11 ' (MICAS) (MIR)

(NAV)
'"EXEC-PLAN-FAILED"

"EXEC-TOKEN-FINISHED <token>"

"MR-RECOVER-FOR <token>"
(M W

I I I \
\ "FSC-POWER-ON-OF-REQUEST < d e n <st

' , I
I 1

(PDU) (M IR)
"FSC-1553-RESET'

(1553BC)(MIR)
"MICAS-RESET" I

I (MICAS)(MIR)
"ACS-SRU-RESET"

(ACS)(MIR)

Figure 1 - Diagram of a Software Module Interface

Feather Rapid Application of Lightweight Formal Methods.. . 6

All the possible output message types of the module are shown as outgoing arrows
on the right.

The name of the message type is shown in capital letters above each arrow, along
with the message parameters (if any) inside angled brackets “<. . .>”.

For each incoming arrow, the names of the modules from which messages of that
type may originate are shown below the arrow.

For each outgoing arrow, the names of the modules to which messages of that type
are sent are shown below the arrow.

Cause-effect relationships between message types are shown as dotted lines going
across the inside of the box:

A dotted line going from an incoming message type to an outgoing message type
indicates that receipt of such an incoming message may lead to the software
module producing such an outgoing message. We will refer to such dotted lines
as denoting “explicit” cause-effect links.

A dotted line going from an outgoing message type to an incoming message type
indicates that sending of such an outgoing message may (via the actions of other
software modules) lead to the receipt of such an incoming message. We will
refer to such dotted lines as denoting “implicit” cause-effect links.

3.2 Analysis Objectives

The objectives set.for analysis were to look for instances of the following potential
problems within the set of software interface diagrams:

“Dangling” outgoing message type - a message type on an outgoing arrow of
module M1 listed as going to some module M2, but not listed on module M2’s
diagram as an incoming message type from module M 1.

“Dangling” incoming message type - a message type on an incoming arrow of
module MI listed as coming from some module M2, but not listed on module M2’s
diagram as an outgoing message type to module M 1.

“Mismatched” parameters - a message type whose list of parameters in one module
is not identical to its list of parameters in some other module.

“Miraculous” implicit cause-effect link - an implicit cause-effect link (i.e., a link
from an outgoing message type (Tl, say), to an incoming message type (T2, say),
such that there does not exist a chain of explicit cause-effect links and
correspondences between outgoing and incoming messages that connects T1 to T2.
See Figure 2 for an example of an implicit cause effect link for which the
corresponding chain exists; had any one of the elements of that chain been absent
(e.g., the explicit cause-effect link in M2), then the chain would have been broken,
and M1 ’s implicit link would have been deemed “miraculous.”

Feather Rapid Application of Lightweight Formal Methods. . . 7

"Omitted" implicit cause-effect link - omission of an implicit cause-effect link (from
outgoing message type T1 to incoming message type T2) for which there does exist
a chain of explicit cause-effect links that connect T1 to T2.

Key: Module

Incoming Outgoing " . Correspondence
Implicit cause-effect . Explicit cause-effect

MI'S implicit cause-efSect link (leftwards from outgoing TI to incoming T2)
corresponds to the chain via M2 (M1 's outgoing T1 corresponds to M2's
incoming TI , which is linked by an explicit cause-efSect link to M2's outgoing T2,
which corresponds to MI ' s incoming T2).

4""""""""""

""""""""""~

Figure 2 - an implicit cause-effect link and a
corresponding chain of explicit cause-effect links

3.3 Analysis Process

Selection of the analysis tool was driven by the following considerations:

pressing need for rapidity of analysis results,

potential need to scale to voluminous quantity of data, and

relatively straightforward nature of analysis calculations.

Together, these motivated the selection of a database with a powerful and flexible query
mechanism to serve as the analysis tool. A powerful and flexible database query
mechanism would enable rapid analysis. The database itself would easily handle
voluminous amounts of data, while automatic query optimization would ensure efficient
analysis. Finally, since the analysis calculations were expected to be relatively
straightforward, it was anticipated that the simple reasoning capabilities of a database
would suffice. Had the analysis required, say, reasoning about symbolic expressions with
arithmetic inequalities, then it is likely that a more sophisticated tool such as a theorem
prover would have been needed.

Feather Rapid Application of Lightweight Formal Methods.. . 8

Our choice was to use AP5 [Cohen 19891, a research-quality advanced database tool
developed at the University of Southern California. AP5 provides an entity-relationship-
like data-model convenient for representation, facilitating the design of the data schema
to hold the information. AP5 exists as an extension of Common Lisp, itself a powerful
and convenient programming language environment, suited to the ad-hoc programming
needed for the process of data-entry. AP5 provides a powerful definition capability and
query interface, facilitating the expression of analyses as database queries, and has a
sophisticated underlying query optimization mechanism.

Having selected the AP5 database system as the analysis tool, the analyses were achieved
by: (1) preparing a database representation to hold the information content of the software
interface diagrams, (2) loading the information into the database, (3) issuing the
appropriate database queries corresponding to each of the problem category analyses, and
(4) interpreting the results.

These steps are now discussed in detail.

3.3.1 Representation

The first analysis step was the design of a database representation to hold the information
content of the software interface diagrams. The AP5 database provides entities (typed
objects) and relationships among entities as building blocks, so a straightforward
representation was developed in terms of these, as follows:

Each message arrow was represented as an entity of type arrow, with attributes (binary
relations) to hold the arrow’s message name, the arrow’s destinations or sources, and its
parameters. Subtypes of this arrow type distinguished incoming and outgoing arrows.
Cause-effect links were represented similarly.

Definitions of information derived from the above were then added. For example, the
concept of correspondence between an outgoing arrow and an incoming arrow was
defined to hold whenever two such arrows share the same message name, the outgoing
arrow points to (i.e., has as one of its destinations) the incoming arrow’s module, and the
incoming arrow points from (i.e., has as one of its sources) the outgoing arrow’s module.
The AP5 definition of this “correspondence” concept is shown figure 3.

(defrelation correspondence ; define the concept correspondence; it relates
((oa ia) s t . ; a pair of objects, oa and ia, such that:
(and (out-arrow oa) ; oa is an outgoing message arrow,

(in-arrow ia) ; ia is an incoming message arrow,
(E (name) (and (arrow-name oa name) (arrow-name ia name)))

(E (mod) (and (arrow-module ia mod) (arrow-to oa mod)))

(E (mod) (and (arrow-module oa mod) (arrow-from ia mod)))

; oa’s name and ia’s name are the same,

; oa points to ia’s module, and

; ia points from oa’s module.
1))

Fimre 3 - examde AP5 definition

Feather Rapid Application of Lightweight Formal Methods.. . 9

The innermost clauses are relational queries, e.g., (arrow-name oa name) is true if and only
if the arrow-name relation relates oa to name. Traditional logical connectives (e.g., and),
and quantification (e.g., (E (v) q) - meaning the existential predicate whose bound variable
is v and whose inner predicate is q) can be employed.

The syntax combines a lisp heritage and a relational flavor, which to those unfamiliar
with either is somewhat obscure at first reading. The important point is to observe that the
overall form of the definition mirrors closely the English description above, that is, there
is a straightforward rendering of the obvious definition into the corresponding formal
expression.

3.3.2 Data entry

The diagrams were available electronically as PostScript files. Some manipulation was
required to extract the information contents of those files and massage it into a form that
could then be input into the AP5 database. This was done semi-automatically, mostly by
means of Emacs macros to extract the textual contents (message names, parameters, and
inputloutput module names). The information imparted by the cause-effect arrows had to
be manually entered into the database (since it was not readily apparent how to recognize
from the PostScript file which message types were being connected by a cause-effect
arrow). Overall, this process took on the order of a couple of hours to process the
equivalent of 6 times the information content of Figure 1.

3.3.3 Analysis

The analysis objectives of section 3.2 were expressed as database queries to evaluate
against the data entered in the previous step. The definitions follow:

“Dangling” outgoing message types:
(listof (oa) s t . (and (out-arrow oa) (not (E (ia) (correspondence oa ia)))))
retrieves the list of objects that are outgoing arrows and are not related by
correspondence to anything.

“Dangling” incoming message types (analogous to the previous bullet):
(listof (ia) s.t. (and (in-arrow ia) (not (E (oa) (correspondence oa ia)))))
“Mismatched” parameters:
(listof (oa ia) s t . (and (correspondence oa ia)

retrieves the list of pairs of objects that are related by correspondence (i.e., an
outgoing message and its incoming counterpart), but whose parameter lists are not
equal.

“Miraculous” implicit cause-effect links:
(listof (oa ia) s.t. (and (implicit-cause-effect oa ia)

retrieves the list of pairs of objects that are related by implicit-cause-effect but not
related by cause-effect-chain. The definitions of those relations are as follows:

(defrelation implicit-cause-effect
((oa ia) s.t. (and (out-arrow oa) (in-arrow ia) (cause-effect oa ia))))

(not (E (plist) (and (parameters oa plist) (parameters ia plist))))))

(not (cause-eff ect-chain oa ia))))

Feather Rapid Application of Lightweight Formal Methods. . , 10

i.e., a cause-effect arrow from an outgoing message arrow to an incoming one.
explicit-cause-effect is defined analogously.

(defrelation cause-eff ect-chain (tclosure correspondence-or-explicit-cause-eff ect))
i.e., the transitive closure of correspondence-or-explicit-cause-eff ect, which is in turn
defined by:
(defrelation correspondence-or-explicit-cause-effect
((a1 a2) s.t. (or (correspondence a1 a2) (explicit-cause-effect a1 a2))))

(listof (oa ia) s.t. (and (not (implicit-cause-effect oa ia))
(cause-effect-chain oa ia)))

retrieves the list of pairs of objects that are not related by implicit-cause-effect but are
related by cause-eff ect-chain.

“Omitted” implicit cause-effect link:

Again, observe that the formal expression of these queries is a straightforward rendering
of the informally expressed concepts.

3.4 Analysis Results

The performed analyses resulted in a list of anomalies for each of the analysis objectives.
Anomalies were readily categorizable into either:

inconsistency - attributable to contradictory information present within the set of
software interface diagrams, or

incompleteness - attributable to information missing from set of software interface
diagrams.

It was immediately clear that a good number of the incompleteness anomalies could be
attributed to the fact that diagrams had not been drawn of all of the system’s software
modules. In response to this, a simple refinement of the database queries was made to
draw the distinction between the following two sub-cases of incompleteness:

internal incompleteness - attributable to missing information that should have been
present within the existing set of software interface diagrams, and

external incompleteness - attributable to the lack of a software interface diagram;
these anomalies point to expectations on the information that those diagrams, if
provided, would contain.

Finally, one further sub-case of reported anomalies was distinguished - “missing” implicit
cause-effect links that could be deduced from other links all present in the same diagram.
For example, for the module shown in Figure 1 , analysis reported that an implicit cause-
effect link from the outgoing NAV-PLAN-PREP arrow to the incoming PS-PLAN-RESULT
arrow was missing. Upon inspection, it was obvious that the diagrams were not bothering
to show such links when they could be deduced from the presence of the other cause-
effect links shown within that same diagram (NAV-PLAN-PREP to
NAV-PLAN-PREP-FINISHED to PS-PLAN-NEXT-HORIZON to PS-PLAN-RESULT). Again,
a simple refinement of the database query was sufficient to automatically distinguish such
cases.

Feather Rapid Application of Lightweight Formal Methods.. . 11

What remained was a list of approximately 20 genuine anomalies, distributed over the
various categories of anomalies identified above. Note that these anomalies were derived
from the information in the software module interface diagrams, which were used as a
form of documentation aid for understanding. Hence it should not be construed that these
anomalies carried through into the actual design.

3.5 Analysis Discussion

Database as a formal analysis tool: The effort succeeded in straightforwardly
representing simple design information in a database, and conducting consistency and
completeness checks by issuing queries against that database.

Flexibility and customizability: Flexibility to construct new checks, and to refine
previous checks, was crucial. This study employed both generic checks (e.g.,
correspondences between outgoing and incoming messages) and customized checks (e.g.,
concerning cause-effect links). Thus there was no a-priori limitation on the set of checks
that could be conducted. Furthermore, refinement of checks was also found to be useful.
In this study, the originally designed consistency checks were refined to take into account
whether information was expected to be absent (e.g., reference to information in a
diagram not provided; implicit cause-effect links justified by other links present within
the same diagram). Such iteration is common whenever someone other than the authors
of the design information conducts the analysis. Assumptions on the use of a notation
may not have been documented, or the analyst may not have come across such
documentation. Analysis that does not take these assumptions into account generates false
alarms (typically, a large number of them!) on the first attempt at analysis. The analyst
must recognize the likely underlying cause, confirm it with the developers, and refine the
analysis accordingly. Flexibility is the key to being able to do this.

Working with available information: Adapting the analysis activities to the existing
available information sources was relatively straightforward. While not completely
automated, actual data capture was a relatively short process. It was preparing for data
capture (i.e., determining the appropriate database schema representation) and conducting
the analyses (i.e., expressing them as database queries) that took the bulk of the time and
effort.

It is likely that the use of an existing CASE tool would provide for most of the checks
that we performed, notably as checks of data flow diagrams. However, one of the goals of
this study was to work with whatever form of information was currently available. The
developers had not employed a CASE tool to design this portion of the software. Our
approach makes it possible to perform the equivalent analyses at little cost, and provides
for additional (and useful) flexibility to build customized analysis checks. In particular, if
we were to try to perform our checks with a CASE tool, we would have had to convert
the available information in order to input it into the tool. Additionally, we would likely
not have had sufficient flexibility to define additional checks (notably of the implicit
cause-effect links) not already provided for by that CASE tool, or to modify checks to
account for missing “obvious” information. The freedom of users to invent and employ
their own notational variants is obviously desirable. Our study suggests it may be possible

Feather Rapid Application of Lightweight Formal Methods. . . 12

to allow this freedom, and be able to rapidly construct analysis mechanisms that work
directly with the users’ new notations.

It could be argued that the redundancy present in the design information was unfortunate,
and that a better solution would have been to use a specification style that eschewed such
redundancy. In particular, the implicit causality links could have been deduced
automatically from the other cause-and-effect information, and so should never need to
have been drawn by hand. Again, we appeal to the goal to work with available
information, and stress that we analyzed what we were actually provided with.
Additionally, it is plausible that the implicit causality links represented requirements, and
that the rest of the specification was intended to fulfil them. If this was indeed the case,
then the analysis was useful as a means to check consistency of the requirements against
the system description.

4. Pilot Study I1 - Analyzing Test Logs

In the second pilot study, we sought to repeat the use of the database tool as a mechanism
for lightweight, rapid analysis, but applied to a different aspect of the development
process. Our second area of focus was on the testing activities of the process.

As part of testing, the software modules are executed in a simulation test-bed (simulating
both the hardware, and the hardware’s environment, e.g., the spacecraft’s camera’s view
of stars). Each test run results yields transcripts of the software’s behavior. In particular,
the message passing between the software modules is recorded in log files. The test team
studies these logs to check that the software is correctly commanding the spacecraft.
However, these logs are highly detailed, and often quite lengthy (several thousand
messages were typical for a test run even during the first iteration of the project’s
development cycle). Hence it was thought appropriate to perform a pilot study in which
rapid lightweight analysis would be applied to a small subset of these test logs.

Again, the four requirements for rapid analysis were considered, and led to the following
decisions:

(1) To rapidly acquire the information to be analyzed: The available test logs provided
the raw data for analysis, already in a highly structured and therefore readily machine
manipulable form.

(2) To rapidly decide what to analyze this information for: There are two sources of
properties that should be true of spacecraft control, and therefore are immediate
candidates for log file analysis: requirements on the correct behavior of the spacecraft
itself (e.g., that the camera shall never be pointed too close to the sun), and expected
protocols of message flow between the software modules. The latter are important
because deviations from expectations might point to abnormalities in the control
software itself.

(3) To rapidly perjiorm the analysis itself: Again, a database was to serve as the analysis
engine. The expectation was that it would be straightforward to populate the database
with the messages in a log file, and express the requirements to be checked as queries.

Feather Rapid Application of Lightweight Formal Methods. . . 13

The query mechanism of the database itself would perform the analyses rapidly and
automatically.

(4) To rapidly interpret the results of the method: Any discrepancies that this analysis
revealed would be readily traceable to the problematic message(s) in the log files.
Hence, this step was expected to need little further effort.

4.1 Available Information

A test run of the spacecraft software yields (among other things) a log file recording all of
the message passing between the software modules. Figure 4 shows a fragment from such
a recording. Each log file line corresponds to a message being sent between modules of
the software implementation. For readability here, log file lines longer than the width of
this text have been split into multiple lines with their continuations indented.

Each log file line begins with the message name, followed by the arguments to that
message. Typically, these arguments take the form of a { } delimited list of { } delimited
attribute-value pairs. For example, the first line comprises the message name
FSC-POWER-ON-OFF-REQUEST, and a list of two attribute-value pairs, the first of
attribute switch-name and value ACS-EGA-A-SW1 , and the second of attribute switch-state
and value FSC-SWITCH-ON. For a few message types, a single argument value simply
appears after the message name without { } delimiters. For example, the
ACS-MDC-STATE-COMMAND message towards the end of the fragment has argument
ACS-RCSDV-MODE.

FSC-POWER-ON-OFF-REQUEST {{switch-name ACS-EGA-A-SWl} {switch-state

MI-MODE-UPDATES {{updates "(MODE-UPDATES (POWER-STATE EGA-A ON)

FSC-IPS-SET-THRUST-LEVEL {{level lo}}
MI-MODE-UPDATES {{updates "(MODE-UPDATES (OP-STATE IPS-A (STEADY-STATE

MI-MODE-UPDATES {{updates "(MODE-UPDATES NIL ((OP-STATE IPS-A (STEADY-

ACS-MDC-STATE-COMMAND ACS-RCSDV-MODE
MI-MODE-UPDATES {{updates "(MODE-UPDATES (CONTROL-MODE ACS

FSC-SWITCH-ON}}

((POWER-STATE EGA-A ON)))"}}

10)) ((OP-STATE IPS-A STARTUP)))"}}

STATE lo))))"}}

ACS-TVC-MODE) ((CONTROL-MODE ACS ACS-TVC-MODE)))"}}
I

Figure 4 - Fragment of a Log File

4.2 Analysis Objectives

The log files capture message passing between the software modules during test runs.
Two kinds of properties can be analyzed for in these log files:

’ Feather Rapid Application of Lightweight Formal Methods.. . 14

Whether the controlled spacecraft adheres to all its explicit requirements. For
example, that the boresight of the camera shall never point to within 1 degree of the
sun when the camera cover is open. These requirements are called “flight rules”, of
which there are expected to be on the order of 100 as successive design iterations
introduce the DS-1 spacecraft’s complete functionality.

Whether the control software itself is operating normally. Specifically, whether the
message flow between the software modules follows the expected protocols. For
example, that a command message is followed some time later by the corresponding
confirmation message, before the next such command message is sent. Deviations
from these expected protocols might indicate abnormalities in the control software
itself.

4.3 Analysis Process

The same database as had been used for the first phase of this pilot study was used again
as the analysis tool. Analyses were achieved by:
(1) preparing a database representation to hold the information content of the message log
files,
(2) loading the message log file information into the database,
(3) issuing the appropriate database queries corresponding to the properties to be checked
of the log file, and
(4) interpreting the results.

4.3.1 Representation

The first analysis step was the design of a database representation to hold the information
content of the log files. We made the initial decision to load all the messages into the
database, and then conduct the analyses as queries against this database.

Messages were represented as objects in the database, with their names and attribute-
value pairs represented as attributes of those message objects. Asserting the binary
relation msg-then-msg between the objects representing successive messages captured the
sequencing of messages in the log file. The transitive closure of this relation was defined
as then, allowing the querying of whether two messages appear in a given order in the log
file (but are not necessarily immediate successors).

4.3.2 Data entry

The well-structured form of the log files made the task of parsing them into the database a
straightforward programming task.

Some of the log files were quite large - 3000 or more messages were common, in even in
the early stages of development. This rendered our nahe approach, loading all of a log
file’s messages into the database, rather slow. Since each query typically involved only a
small subset of the message types, it proved to be much more efficient to load into the
database only messages that were instances of those message types. This was easily
automated, by looking for the message names mentioned in the query, and then loading
those and only those named messages. This simple refinement considerably speeded the

Feather Rapid Application of Lightweight Formal Methods.. . 15

loading and analysis activities. Discarding information that is obviously irrelevant to the
analysis objective is a commonly applied step to improve the tractability of analysis.

4.3.3 Analysis

Analysis was to check adherence to flight rules (explicit requirements expressed in terms
of the spacecraft’s condition) and conformance to normal operation of the control
software itself (protocols of message flow among the software modules).

Analysis was achieved by expressing a flight rule or message protocol as a database query
(or queries) which would retrieve all instances of messages in violation of that condition.
For example, one of the flight rules says: “When the IPS is not thrusting, be in RCS
control mode”. This could be violated either by turning off thrusting while not in RCS
control mode, or turning off RCS control mode while not thrusting. The following two
database queries check for these violations:

Find an IPS-thrust-off message that occurs while RCS control mode is off (i.e.,
occurs after some earlier RCS-control-mode-off message, but before any subsequent
RCS-control-mode-on message), and

Find an RCS-control-mode-off message that occurs while IPS is not thrusting (i.e.,
occurs after some earlier IPS-thrust-off message, but before any subsequent
IPS-thrust-on message).

It is straightforward to express queries such as these in the AP5 database query language.
For example, the query corresponding to the first kind of violation is shown in Figure 5.

Ideally, the user should be able to express the single flight rule, and have this pair of
queries be automatically generated. While we anticipate this would be simple to
implement, we did not do so as part of the pilot study.

(listof (ml m2) s.t.
(and (RCS-control-mode-off m l) ; m l is an RCS-control-mode-off message

(IPS-thrust-off m2) ; m2 is an IPS-thrust-off message
(then m l m2) ; m2 occurs affer m l
(not (exists (m3) ; there’s no m3 that’s an:

(and (RCS-control-mode-on m3) ; RCS-control-mode-on message,
(then m l m3) ; occurs after m l , and
(then m3 m2))))))) ; occurs before m2

I Query to find a message that turns oflIPS thrusting while RCS is ofl(i.e., after an RCS I oflmessage, but before any subsequent RCS on message).
Figure 5: database query for flight rule violations

Analysis for conformance to message passing protocols is similar in nature. For example,
we may expect conformance to the protocol that a command message is followed some
time later by the corresponding confirmation message, before the next such command
message is sent. The database query to check for violations of this rule need simply look

Feather Rapid Application of Lightweight Formal Methods.. . 16

for two occurrences of the command message without any intervening confirmation
message.

Since there were multiple log files (corresponding to distinct test runs), we found it
convenient to automate conducting the same analysis across a whole set of log files. The
results for each log file were gathered, together with a summary pointing to which (if any)
of the log files yielded non-empty lists of answers to the queries. Again, a simple step to
take, but one that further enhanced the automation of the overall process. We found that
the time to perform a typical query across a set of 60 or so log files, of which at least 20
were of substantial length, was on the order of two minutes, executing on a PentiumB
166.

4.4 Analysis Results

Analyses were conducted for adherence to a small number of the expected message
patterns and flight rules, on log files produced in two successive rounds of the project’s
iterative development process.

One surprise was revealed by these analyses - while checking a log file for adherence to a
flight rule, several violations were detected. This led to (manual) inspection of the log
file. Guided by the violation (i.e., knowing what to look for), it was now easy to spot
repeated instances where commanding the spacecraft to change to an RCS mode was
followed by a confirmation reporting the spacecraft had changed to a mode other than
RCS! The explanation turned out to be attributable to an anomaly in the creation of the
message log files - the actual logging uses concise numerical codes in place the human
readable message names. Post-processing of the log files is performed later to replace the
codes with the corresponding names. In between the time of the simulation run (during
which the logging of messages actually took place) and the post-processing of those log
files, the correspondence between message names and codes was changed. Thus it turned
out to be a false alarm - the spacecraft software had, in fact, been working correctly.

In fact, no genuine anomalies were discovered by this pilot study, most likely because for
the patterns and flight rules studied, the design was functioning correctly. Nevertheless,
the goals of the pilot study were met - namely, to demonstrate the feasibility of rapid
analysis of voluminous amounts of information. This has led to more recent work
(ongoing) in which project money (as contrasted to the research funding that supported
the pilot study) is paying for the application of this same overall approach.

4.5 Analysis Discussion

Database as a formal analysis tool: Again, a database proved sufficient for representing
the information content to be analyzed, and its query mechanism capable of expressing
the analyses. The test logs emerge from test runs of the complex software system, which
involves a planner, and concurrently operating diagnostic engine and real-time executive.
Thorough analysis of these test logs is helpful towards developing assurance that the
system as a whole is operating correctly.

Scaling to larger analyses: These experiments were conducted in the early iterations of
the spacecraft software development. The simple optimization of loading the database
with only those messages relevant to the query, discarding the rest, was sufficient to

.. Feather Rapid Application of Lightweight Formal Methods. . . 17
6

achieve desirable levels of efficiency for these early iterations. In successive design
iteration, further detail of the spacecraft is introduced, leading to more message types,
more flight rules, and longer message logs. This might necessitate further optimization of
the checking process. The obvious next step to optimize the analysis technique would be
to process each message log file incrementally, maintaining just enough of the state of the
spacecraft so as to be able to check the flight rule(s) of interest at the time. For example,
to check the flight rule “When the IPS is not thrusting, be in RCS control mode”, read the
messages of a log file in one by one, maintaining the IPS state (thrusting or not thrusting)
and the control mode (RCS or not RCS) incrementally, and watch for a database
transition that leads to a state in violation of this rule. This is an example of the
conversion of a temporal formula into a finite state automaton to recognize violations of
that formula. Such an approach is described in [Dillon & Yu 19941. If we were to
incorporate this optimization into our approach, we would encode the automaton as
database integrity conditions that watch each database transition, advancing the state of
the automaton as appropriate and generating an error report if and when the automaton
ever reached a state corresponding to a violation.

Convenience: The experience of expressing several flight rules and message passing
protocols revealed commonly recurring idioms. An example of such an idiom is: the
occurrence of an instance of message A followed some time later by an instance of
message B without an intervening instance of message C. Rather than have to write
(exists (mA mB) (and (A-type-message mA)

(B-type-message mB)
(then mA mB)
(not (exists (mC) (and (C-type-message mC)

(then mA mC)
(then mC mB))))))

it was much more convenient to define a macro A-noC-B that would expand to the above,
and thereafter write simply
(A-noC-B A-type-message B-type-message C-type-message).
Indeed, what was needed was a combination of a vocabulary tailored for intervals [Allen
19831 (e.g., interval A should contain interval B), timing constraints [Lutz & Wong 19921
(e.g., X must occur within 10 seconds after a Y has occurred), etc.

5. Conclusions

The two pilot studies showed two successful applications of lightweight formal methods
in a fast-paced development setting, yielding results of a modest nature in a timely
fashion. These studies employed lightweight formal methods as a complement to, not
replacement for, other forms of quality assurance. Their relationship to other formal
method approaches and to testing is discussed next.

Thorough testing of the software code itself remains essential, since it alone has the
capacity to exercise the actual code rather than an abstraction of that code. Testing would,
of course, reveal the interface mismatches that the first pilot study addresses, however
would do so only after the designs had been developed into code. The first pilot study

Feather Rapid Application of Lightweight Formal Methods.. . 18

showed how this class of problems could be detected at design time. The inclusion of a
form of simple causality information in the design documents made possible further
checking, beyond simply issues of interface compatibility. The second pilot study showed
how the information that results from testing could be automatically analyzed for a range
of conditions. This is obviously reliant upon testing having taken place (without testing,
there would be no test logs to analyze!). It augments testing by performing a series of
mundane checks carried out thoroughly against all the available test logs. It could also be
useful as a means to query the set of test cases, and thus help the test team to navigate
through the set of tests, and to estimate the coverage provided by those tests.

More traditional “heavyweight” forms of formal methods, for example, symbolic
evaluation of a formal specification, state exploration, and theorem proving, are
irreplaceable as means to expose the presence of particularly subtle errors (better yet, to
provide assurance as to the absence of those errors). However, these methods typically do
not scale to the size and complexity of the full problem. Therefore they are usually
applied to a carefully chosen subset of the overall problem, or to a carefully constructed
abstraction of the problem. In contrast, the lightweight approach followed here is applied
to the information content of existing project documentation, and little or no human-
conducted selection from, or abstraction of, this information has been needed. We
therefore ascribe the benefits of the approach to the mechanized technique, rather than to
the skill and insight of the human analyst. This gives us confidence that the technique is
ready for widespread application.

Many approaches to analysis would be capable of performing the simple analyses that we
have conducted. However, our emphasis has been upon the goal of rapid analysis. This
precludes many of the heavyweight formal methods, since their application requires
considerable time and effort to prepare the input for the analysis tool (e.g., to construct a
formal specification), and, often, to perform the actual analysis (e.g., attempt to prove the
theorem, and interpret the failure to do so as an anomaly in the specification). An
interesting observation (due to one of this paper’s reviewers) is that heavyweight formal
methods typically require manual effort that is proportional to the entire input to the
analysis process, including both the properties to be shown and the specification upon
which that analysis is to be conducted. For example, theorem proving usually requires
manual effort to construct the specification, to express the properties to be proven, and
then to actually prove them. Model checking and other forms of state exploration require
construction of a state machine model to be checked; often, to obtain a state model that is
tractable to analyze, some significant amount of manually performed abstraction is
required. The lightweight approach as applied in the second pilot study required manual
effort that was proportional only to the expression of the properties -- the test logs to be
checked for adherence to these properties were loaded automatically into the database.
This made it suited to the checking of voluminous amounts of information. The first pilot
study did require some manual effort proportional to the size of the specifications - it was
necessary to manually translate the information content of diagrams’ arrows into database
information. However, this was so straightforward a task that it could be done fairly
quickly and without great insight.

Feather Rapid Application of Lightweight Formal Methods. . .
a

19

Overall, we attribute the achievement of rapid analysis to our choice of a database as the
analysis engine. This enabled us to, quickly and easily incorporate available information
as data in the database, and cast analysis problems as database queries. The underlying
database technology then provided the efficient evaluation of those queries.

Nevertheless, there are emerging results of application of “heavyweight” formal methods
in a rapid enough fashion to contribute to ongoing development activities. For example,
[Easterbrook et al 19971 presents three case studies of formal methods applied to the
requirements phase of system developments. In these cases there is typically an up-front
manual activity of re-expressing the requirements into a form suitable for application of
the analysis tools. This manual activity yields benefits even before the analysis takes
place (e.g., revelations of minor ambiguities and incompletenesses), so itself qualifies as a
form of “lightweight” analysis method, with the added benefit of being a key step towards
the eventual application of the “heavyweight” method. Further research is needed find a
smooth progression from “lightweight” to “heavyweight” formal methods, and so realize
the benefits of both approaches. Work along these lines includes the ongoing extension of
SCR-style consistency checking (e.g., Heitmeyer Jeffords & Labaw 19961) to incorporate
model checking as a more sophisticated form of analysis, and, in the reverse direction, the
incorporation of tabular forms of expression into the PVS theorem prover [Owry Rushby
& Shankar 19971.

The most expedient applications of formal methods occur when the form of input needed
by the formal analysis tool coincides with the form of expression used by the project to
state their requirements, designs, etc. CASE tools would seem to offer an expedient
vehicle through which to both capture the input needed for formal analysis, and provide
(automatic) formal analysis as just another option to the user. The relatively simple kinds
of analyses reported herein might be well suited to CASE tool usage. More sophisticated
analyses, however, might necessitate some tailoring of the input language. For example,
[Leveson et a1 19941 devised a formal language that was suitable for human writing and
reviewing of requirements and for mechanical analysis. Such circumstances are all too
rare, and it is likely that for a long time to come there will remain a need to adapt formal
method techniques to whatever forms of documentation are employed by projects.
Lightweight formal methods seem particularly suited to this activity.

Another possible application of lightweight formal methods is as part of the infrastructure
that would support “viewpoints” (also called “multiple perspective”) during software
development [Finkelstein et al 19921 [Vidal et a1 19961. In this envisaged approach, a
development environment should actively support multiple participants in the course of
their requirements, design, etc., activities. Consistency checking between the multiple
participants’ artifacts (e.g., requirements, specifications, and designs) would be a core
service of any such environment.

6. Acknowledgements

Thanks are due to John Kelly (within whose formal methods effort this work has been
conducted) and Robyn Lutz for insights and support. The assistance of many New
Millenium DS-1 project members is gratefully acknowledged, especially Bob Kanefsky

Feather Rapid Application of Lightweight Formal Methods. . .
c

20

from NASNAMES and Tom Starbird from NASNJPL, who have answered many
questions and provided many clarifications. The generosity of the New Millenium teams
to make their interim project development documentation available to us for study has
made this project possible. The editors' and referees' comments were insightful and
helpful.

7. References

[Allen 19831 J.F. Allen. Maintaining Knowledge about Temporal Intervals.
Communications of the ACM, 26(11):832-843, 1983.

[Cohen 19891 D. Cohen. Compiling Complex Database Transition Triggers. Proceedings
of the ACM SIGMOD International Conference on the Management of Data: 225-234,
Portland, Oregon, ACM Press, 1989.

[Dillon & Yu 19941 L. Dillon & Q. Yu. Oracles for Checking Temporal Properties of
Concurrent Systems. Proceedings of the 2"d ACM SIGSOFT Symposium on Foundations
of Software Engineering. Software Engineering Notes 19(5): 140-153, 1994.

[Easterbrook et al 19971 S. Easterbrook, R. Lutz, R. Covington, J. Kelly, Y. Amp0 & D.
Hamilton. Experiences Using Formal Methods for Requirements Modeling. IEEE
Transactions on Software Engineering, 24(l), January 1998.

[Finkelstein et a1 19921 A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein & M.
Goedicke. Viewpoints: A Framework for Integrating Multiple Perspectives in System
Development" International Journal of Software Engineering and Knowledge
Engineering 2(1): 31-58, March 1992.

[Heitmeyer Jeffords & Labaw 19961 C. Heitmeyer, R. Jeffords & B. Labaw. Automated
consistency checking of requirements specifications. ACM Transactions on Software
Engineering and Methodology 5(3): 231-261, July 1996.

[Jackson & Wing 19961 D. Jackson & J. Wing. Lightweight Formal Methods. IEEE
Computer: 21-22, April 1996.

[Leveson et a1 19941 N.G. Leveson, M.P.E. Heimdahl, H. Hildreth & J.D.Reese.
Requirements Specification for Process-Control Systems. IEEE Transactions on Software
Engineering 20(9): 684-707, September 1994.

[Lutz & Wong 19921 R. Lutz & J. Wong. Detecting Unsafe Error Recovery Schedules.
IEEE Transactions on Sofmare Engineering, 18(8):749-760, 1992.

[Lutz 19931 R. Lutz. Analyzing Software Requirements Errors in Safety-Critical,
Embedded Systems. Proceedings of the IEEE International Symposium on Requirements
Engineering (RE '93): 126-133, San Diego, California, January 1993.

[Owry Rushby & Shankar 19971 S. Owry, J. Rushby & N. Shankar. Integration in PVS:
Tables, types, and Model Checking. To appear in Tools and Algorithms for the
Construction and Analysis of Systems (TACAS '97), Enschede, The Netherlands, 1997.

(I

.d Feather Rapid Application of Lightweight Formal Methods. . .
*

[Vidal et a1 19961 L. Vidal, A. Finkelstein, G . Spanoudakis, A. Wolf (eds.) Joint
Proceedings of the SIGSOFT '96 Workshops, Part 11: Proceedings of the International
Workshop on Multiple Perspectives in Software Development. ACM 1996.

21

